Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phys Rev Lett ; 132(9): 099901, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489658

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.123.107703.

2.
Phys Med ; 87: 39-48, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34116316

RESUMO

PURPOSE: The study investigates the numerical modelling as well as experimental validation of magnetic susceptibility effects with respect to a 3D linearity phantom used for the quantification of MR image distortions. METHODS: Magnetic field numerical simulations based on finite difference methods were conducted to generate the susceptibility (χ) model of the MRID3D phantom. Experimental data was acquired and analyzed for eight different MR scanners to include a wide range of scanning parameters. Distortion vector fields were generated by applying a harmonic analysis based on finite elements methods. Phantom scans for the same setup but with opposite polarities of the frequency encoding gradient were processed in conjunction with the susceptibility modelling to separately quantify three field components due to gradient non-linearities (GNL), B0 inhomogeneities and χ perturbations. RESULTS: The numerical modelling showed a significant range of χ value of up to 8.23 ppm, with a mean value of 2.9 ppm. The χ perturbations were found to be mostly present at the end plates of the cylindrical phantom design. The simulations also showed that setup rotations of up to 10° introduced only negligible variations in the χ model of less than 0.1 ppm. This allows for a straightforward practical implementation of the modelling as a single lookup table. After correcting for the χ perturbations, the B0 inhomogeneities were derived and found to be in good agreement with either the MR system manufacturer specifications or experimental data available in the literature. CONCLUSIONS: It is possible to accurately model the magnetic susceptibility signature of a 3D linearity device and remove it as a post-processing correction step. This is important as the procedure unlocks the ability of determining both the GNL field and B0 map of the scanner without the need of extra acquisitions or phantoms.


Assuntos
Imageamento por Ressonância Magnética , Magnetismo , Campos Magnéticos , Imagens de Fantasmas
3.
Phys Rev Lett ; 123(10): 107703, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573319

RESUMO

We perform tunneling measurements on indium antimonide nanowire-superconductor hybrid devices fabricated for the studies of Majorana bound states. At finite magnetic field, resonances that strongly resemble Majorana bound states, including zero-bias pinning, become common to the point of ubiquity. Since Majorana bound states are predicted in only a limited parameter range in nanowire devices, we seek an alternative explanation for the observed zero-bias peaks. With the help of a self-consistent Poission-Schrödinger multiband model developed in parallel, we identify several families of trivial subgap states that overlap and interact, giving rise to a crowded spectrum near zero energy and zero-bias conductance peaks in experiments. These findings advance the search for Majorana bound states through improved understanding of broader phenomena found in superconductor-semiconductor systems.

4.
Phys Rev Lett ; 123(6): 060402, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491186

RESUMO

Higher-order topological superconductors hosting Majorana-Kramers pairs (MKPs) as corner modes have recently been proposed in a two-dimensional quantum spin Hall insulator proximity-coupled to unconventional cuprate or iron-based superconductors. Here, we show that such MKPs can be realized using a conventional s-wave superfluid with a soliton in cold atom systems governed by the Hubbard-Hofstadter model. The MKPs emerge in the presence of interaction at the "corners" defined by the intersections of line solitons and the one-dimensional edges of the system. Our scheme is based on the recently realized cold atom Hubbard-Hofstadter lattice and will pave the way for observing possible higher-order topological superfluidity with conventional s-wave superfluids or superconductors.

5.
Med Phys ; 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799634

RESUMO

PURPOSE: Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT-specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex three-dimensional (3D) fields derived from MR images affected by system-related distortions. METHODS: An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - that is, sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. RESULTS: The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm was 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 1 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. CONCLUSIONS: A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantitation of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control.

6.
Med Phys ; 43(3): 1550-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936738

RESUMO

PURPOSE: Magnetic resonance (MR) images are affected by geometric distortions due to the specifics of the MR scanner and patient anatomy. Quantifying the distortions associated with mobile tumors is particularly challenging due to real anatomical changes in the tumor's volume, shape, and relative location within the MR imaging volume. In this study, the authors investigate the 4D composite distortion field, which combines the effects of the susceptibility-induced and system-related distortion fields, experienced by mobile lung tumors. METHODS: The susceptibility (χ) effects were numerically simulated for two specific scenarios: (a) a full motion cycle of a lung tumor due to breathing as depicted on ten phases of a 4D CBCT data set and (b) varying the tumor size and location in lung tissue via a synthetically generated sphere with variable diameter (4-80 mm). The χ simulation procedure relied on the segmentation and generation of 3D susceptibility (χ) masks and computation of the magnetic field by means of finite difference methods. A system-related distortion field, determined with a phantom and image processing algorithm, was used as a reference. The 4D composite distortion field was generated as the vector summation of the χ-induced and system-related fields. The analysis was performed for two orientations of the main magnetic field (B0), which correspond to several MRIgRT system configurations. Specifically, B0 was set along the z-axis as in the case of a cylindrical-bore scanner and in the (x,y)-plane as for a biplanar MR. Computations were also performed for a full revolution at 15° increments in the case of a rotating biplanar magnet. Histograms and metrics such as maximum, mean, and range were used to evaluate the characteristics of the 4D distortion field. RESULTS: The χ-induced field depends on the change in volume and shape of the moving tumor as well as the local surrounding anatomy. In the case of system-related distortions, the tumor experiences increased field perturbations as it moves further away from the MR isocenter. For a mobile lung tumor, the 4D composite field, corresponding to a 1.5 T field and a readout gradient of 5 mT/m, amounts to 3.0 and 2.8 mm for the MRIgRT system designs featuring B0 oriented along the z-axis (cylindrical-bore scanner) and in the (x,y)-plane (biplanar scanner), respectively. For a rotating biplanar scanner, the composite distortion field varied nonlinearly with the rotation angle. Overall, the dominant contribution to the composite field was from the system-related distortion field. The tumor centroid experienced a systematic shift of 2 mm and showed a negligible perturbation for different B0 values. The dependency on the tumor size was also investigated, namely the max values varied from 1.2 to 2.5 mm for spherical volumes with a diameter between 4 and 80 mm. CONCLUSIONS: The composite distortion field requires adequate quantification for lung radiation therapy applications such as treatment planning, pretreatment patient setup verification, and real-time treatment delivery guidance. For certain scenarios such as small tumor volumes, the spatial distortions may be corrected by applying systematic shifts derived from a single tumor motion phase. In the case of high readout gradients common to fast imaging applications, the χ distortions were found to be less than 1 mm irrespective of scanner configuration.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética , Movimento , Radioterapia Guiada por Imagem/métodos , Humanos , Neoplasias Pulmonares/fisiopatologia , Respiração
7.
J Phys Condens Matter ; 26(17): 172203, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722427

RESUMO

The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands.


Assuntos
Instalação Elétrica , Modelos Químicos , Teoria Quântica , Semicondutores , Eletricidade Estática , Simulação por Computador , Análise de Falha de Equipamento
8.
J Phys Condens Matter ; 25(23): 233201, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23665894

RESUMO

After a recent series of rapid and exciting developments, the long search for the Majorana fermion-the elusive quantum entity at the border between particles and antiparticles-has produced the first positive experimental results, but is not over yet. Originally proposed by E Majorana in the context of particle physics, Majorana fermions have a condensed matter analogue in the zero-energy bound states emerging in topological superconductors. A promising route to engineering topological superconductors capable of hosting Majorana zero modes consists of proximity coupling semiconductor thin films or nanowires with strong spin-orbit interaction to conventional s-wave superconductors in the presence of an external Zeeman field. The Majorana zero mode is predicted to emerge above a certain critical Zeeman field as a zero-energy state localized near the order parameter defects, namely, vortices for thin films and wire ends for the nanowire. These Majorana bound states are expected to manifest non-Abelian quantum statistics, which makes them ideal building blocks for fault-tolerant topological quantum computation. This review provides an update on the current status of the search for Majorana fermions in semiconductor nanowires by focusing on the recent developments, in particular the period following the first reports of experimental signatures consistent with the realization of Majorana bound states in semiconductor nanowire-superconductor hybrid structures. We start with a discussion of the fundamental aspects of the subject, followed by considerations on the realistic modeling, which is a critical bridge between theoretical predictions based on idealized conditions and the real world, as probed experimentally. The last part is dedicated to a few intriguing issues that were brought to the fore by the recent encouraging experimental advances.

9.
Med Phys ; 39(12): 7185-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231269

RESUMO

PURPOSE: MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. METHODS: The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air∕lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B(0)) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. RESULTS: Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT∕m by using an annular phantom mimicking the water-air and water-oil χ interfaces. For quadratic geometries, the magnitude of field distortion increased rapidly with the size of the inhomogeneity up to about 10 mm and then tended to plateau. This trend became more evident for materials with a larger Δχ relative to water. The simulations showed only a slight increase in the maximum distortion values when the B(0) orientation was varied with regard to the shape of the χ inhomogeneity. In the case of patient anatomy, the largest distortion values arose at the air-soft-tissue interface. Considering the two MR-linac system configurations and comparing the field distortion values corresponding to all organ structures, the distortions tended to be larger for the biplanar magnet. The authors provide a reference table with ppm values which can be used to easily evaluate the geometric distortions for patient data as a function of B(0) and the strength of the encoding gradient. CONCLUSIONS: The susceptibility distortions were quantified as a function of multiple parameters such as the χ inhomogeneity size and shape, the magnitude of B(0) and the readout gradient, and the orientation of B(0) with respect to the sample geometry. The analysis was performed for several anatomical sites and corresponding to two B(0) orientations as featured by MR-linac systems.


Assuntos
Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Radioterapia Conformacional/métodos , Radioterapia Guiada por Imagem/métodos , Simulação por Computador , Humanos , Campos Magnéticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Med Phys ; 39(7Part2): 4625, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516558

RESUMO

INTRODUCTION: An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. METHODS: A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. RESULTS/DISCUSSION: The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility.

11.
Med Phys ; 39(6Part3): 3618-3619, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517391

RESUMO

PURPOSE: To develop the operational workflow and safety systems of a magnetic resonance-guided radiotherapy system (MRgRT™), which comprises an MR scanner on rails that travels between a linac vault, MR simulation room and brachytherapy suite. METHODS: To develop a safe and streamlined clinical workflow, we conducted a comprehensive process review based on a layered approach to overall MRgRT safety that included i) facility design, (ii) workflow iii) system design and interlocks and iv) policies and procedures. We applied existing guidelines for MR and radiation safety, and employed system-level failure modes and effects analyses to design the MRgRT facility and clinical procedures. RESULTS: In the MRgRT system configuration, the MR and treatment systems are physically decoupled and used independently requiring novel administration of existing MR and radiation guidelines. A key element for the safe operation of the moving MR unit is the concept that all three rooms represent zone 4 areas (American College of Radiology guidelines). Using this concept, we applied MR guidelines to develop safe procedures for the overall suite, including screening of all persons entering the suite in zone 2 and control of ferromagnetic materials. We generated a clinical workflow that ensures expedient and safe transition between MR imaging and treatment delivery in both the linac and brachytherapy rooms. In addition, we designed emergency protocols for MRgRT, which helped drive requirements for the facility and system design, e.g., need for an accessible MR-safe stretcher. CONCLUSIONS: We designed the first comprehensive description of the MRgRT workflow, interlocking systems and safety procedures. With this layered approach to safety, we addressed critical aspects regarding safe operation and workflow for the system and provided multiple redundancies for key processes. Coupled with customized staff training, the proposed design ensures the safe operation of the MRgRT facility. This work has received research personnel support from IMRIS.

12.
Med Phys ; 37(4): 1714-21, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443492

RESUMO

PURPOSE: One of the recently published concepts that combine the soft-tissue imaging capabilities of MRI with external beam radiotherapy involves the rigid coupling of a linac with a rotating biplanar low-field MR imaging system. While such a system would prevent possible image distortion resulting from relative motion between the magnet and the linac, the rotation of the magnet around the patient can itself introduce possibilities for image distortion that need to be addressed. While there are straightforward techniques in the literature for correcting distortions from gradient nonlinearities and nonuniform magnetic fields during image reconstruction, the correction of distortions related to tissue magnetic susceptibility is more complex. This work investigates the extent of this latter distortion type under the regime of a rotating magnetic field. METHODS: CT images covering patient anatomy in the head, lung, and male pelvic regions were obtained and segmented into components of air, bone, and soft tissue. Each of these three components was assigned bulk magnetic susceptibility values in accordance with those found in the literature. A finite-difference algorithm was then implemented to solve for magnetic field distortion maps should the anatomies be placed in the uniform polarizing field of an MR system. The algorithm was repeated multiple times as the polarizing field was rotated axially about the virtual patient in 15 degrees increments. In this way, a map of maximum distortion, and the range of distortion as the magnetic field is rotated about each anatomical region could be determined. The consequence of these susceptibility distortions in terms of geometric signal shift was calculated for 0.2 T, as well as another low-field system (0.5 T), and a higher field 1.5 T system for comparison, using the assumption of a frequency encoding gradient strength of 5 mT/m. RESULTS: At 0.2 T, the susceptibility-related distortion was limited to less than 0.5 mm given an encoding gradient strength of 5 mT/m or higher. To maintain this same level of geometric accuracy, the 0.5 T system would require a moderately higher minimum gradient strength of 11 mT/m, and at a typical MR field strength of 1.5 T this minimum gradient strength would increase to 33 mT/m. The influence of magnetic susceptibility on mean frequency shift as the field orientation was rotated was also investigated and found to account for less than half a millimeter at 1.5 T, and negligible for low-field systems. CONCLUSIONS: A study of three sites (head, lung, and prostate) that are vulnerable to magnetic susceptibility-related distortions were studied, and showed that in the context of a rotating polarizing magnet, low-field systems can maintain geometric accuracy of 0.5 mm with at most moderate limitations on sequence parameters. This conclusion will likely apply only to endogenous tissues, as implanted materials such as titanium can create field distortions much in excess of what may normally be induced in the body. Items containing such materials (hip prostheses, for example) will require individual scrutiny.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Radioterapia/instrumentação , Algoritmos , Simulação por Computador , Desenho de Equipamento , Cabeça/patologia , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/patologia , Imageamento por Ressonância Magnética/métodos , Magnetismo , Masculino , Próstata/patologia , Radioterapia/métodos , Reprodutibilidade dos Testes , Titânio/química , Tomografia Computadorizada por Raios X/métodos
13.
Med Phys ; 36(6): 2084-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610297

RESUMO

The authors report the first magnetic resonance (MR) images produced by their prototype MR system integrated with a radiation therapy source. The prototype consists of a 6 MV linac mounted onto the open end of a biplanar 0.2 T permanent MR system which has 27.9 cm pole-to-pole opening with flat gradients (40 mT/m) running under a TMX NRC console. The distance from the magnet isocenter to the linac target is 80 cm. The authors' design has resolved the mutual interferences between the two devices such that the MR magnetic field does not interfere with the trajectory of the electron in the linac waveguide, and the radiofrequency (RF) signals from each system do not interfere with the operation of the other system. Magnetic and RF shielding calculations were performed and confirmed with appropriate measurements. The prototype is currently on a fixed gantry; however, in the very near future, the linac and MR magnet will rotate in unison such that the linac is always aimed through the opening in the biplanar magnet. MR imaging was found to be fully operational during linac irradiation and proven by imaging a phantom with conventional gradient echo sequences. Except for small changes in SNR, MR images produced during irradiation were visually and quantitatively very similar to those taken with the linac turned off. This prototype system provides proof of concept that the design has decreased the mutual interferences sufficiently to allow the development of real-time MR-guided radiotherapy. Low field-strength systems (0.2-0.5 T) have been used clinically as diagnostic tools. The task of the linac-MR system is, however, to provide MR guidance to the radiotherapy beam. Therefore, the 0.2 T field strength would provide adequate image quality for this purpose and, with the addition of fast imaging techniques, has the potential to provide 4D soft-tissue visualization not presently available in image-guided radiotherapy systems. The authors' initial design incorporates a permanent magnet; however, other types of magnets and field strengths could also be incorporated. Usable MR images were obtained during linac irradiation from the linac-MR prototype. The authors' prototype design can be used as the functional starting point in developing real-time MR guidance offering soft-tissue contrast that can be coupled with tumor tracking for real-time adaptive radiotherapy.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas
14.
Phys Med Biol ; 54(2): 243-57, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19088391

RESUMO

Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.


Assuntos
Magnetismo , Fótons/uso terapêutico , Radioterapia de Alta Energia , Algoritmos , Fenômenos Biofísicos , Humanos , Magnetismo/estatística & dados numéricos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Alta Energia/estatística & dados numéricos , Água
15.
Phys Med Biol ; 53(13): 3579-93, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18560047

RESUMO

The aim of this study is to develop a magnetic resonance imaging (MRI)-based treatment planning procedure for intracranial lesions. The method relies on (a) distortion correction of raw magnetic resonance (MR) images by using an adaptive thresholding and iterative technique, (b) autosegmentation of head structures relevant to dosimetric calculations (scalp, bone and brain) using an atlas-based software and (c) conversion of MR images into computed tomography (CT)-like images by assigning bulk CT values to organ contours and dose calculations performed in Eclipse (Philips Medical Systems). Standard CT + MRI-based and MRI-only plans were compared by means of isodose distributions, dose volume histograms and several dosimetric parameters. The plans were also ranked by using a tumor control probability (TCP)-based technique for heterogeneous irradiation, which is independent of radiobiological parameters. For our 3 T Intera MRI scanner (Philips Medical Systems), we determined that the total maximum image distortion corresponding to a typical brain study was about 4 mm. The CT + MRI and MRI-only plans were found to be in good agreement for all patients investigated. Following our clinical criteria, the TCP-based ranking tool shows no significant difference between the two types of plans. This indicates that the proposed MRI-based treatment planning procedure is suitable for the radiotherapy of intracranial lesions.


Assuntos
Encefalopatias/radioterapia , Cabeça/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Encefalopatias/patologia , Cabeça/patologia , Humanos , Dosagem Radioterapêutica , Resultado do Tratamento
16.
Med Phys ; 35(3): 1019-27, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18404937

RESUMO

A novel geometry has been proposed for a hybrid magnetic resonance imaging (MRI)-linac system in which a 6 MV linac is mounted on the open end of a biplanar, low field (0.2 T) MRI magnet on a single gantry that is free to rotate around the patient. This geometry creates a scenario in which the magnetic field vector remains fixed with respect to the incident photon beam, but moves with respect to the patient as the gantry rotates. Other proposed geometries are characterized by a radiation source rotating about a fixed cylindrical magnet where the magnetic field vector remains fixed with respect to the patient. In this investigation we simulate the inherent dose distribution patterns within the two MRI-radiation source geometries using PENELOPE and EGSnrc Monte Carlo radiation transport codes with algorithms implemented to account for the magnetic field deflection of charged particles. Simulations are performed in phantoms and for clinically realistic situations. The novel geometry results in a net Lorentz force that remains fixed with respect to the patient (in the cranial-caudal direction) and results in a cumulative influence on dose distribution for a multiple beam treatment scenario. For a case where patient anatomy is reasonably homogeneous (brain plan), differences in dose compared to a conventional (no magnetic field) case are minimal for the novel geometry. In the case of a lung plan where the inhomogeneous patient anatomy allows for the magnetic field to have significant influence on charged particle transport, larger differences occur in a predictable manner. For a system using a fixed cylindrical geometry and higher magnetic field (1.5 T), differences from the case without a magnetic field are significantly greater.


Assuntos
Imageamento por Ressonância Magnética/métodos , Radioterapia/métodos , Algoritmos , Encéfalo/cirurgia , Radioisótopos de Cobalto , Humanos , Pulmão/cirurgia , Magnetismo , Método de Monte Carlo , Imagens de Fantasmas , Radiometria
17.
Phys Rev Lett ; 100(4): 046402, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352310

RESUMO

We study the superconducting state of the hole-doped two-dimensional Hubbard model using cellular dynamical mean-field theory, with the Lanczos method as impurity solver. In the underdoped regime, we find a natural decomposition of the one-particle (photoemission) energy gap into two components. The gap in the nodal regions, stemming from the anomalous self-energy, decreases with decreasing doping. The antinodal gap has an additional contribution from the normal component of the self-energy, inherited from the normal-state pseudogap, and it increases as the Mott insulating phase is approached.

18.
Med Phys ; 35(7Part3): 3412, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28512909

RESUMO

At Cross Cancer Institute, we are investigating a novel MRI-linac system consisting of a bi-planar 0.2 T permanent magnet coupled with a 6 MV Linac. The system can freely revolve axially around the patient to deliver dose from any desired angle. For such a system, the radiation treatment planning procedure is expected to rely on the MR images only, i.e. MRI Simulation. Replacing the current CT/CT+MRI-based RTP procedure with MRI Simulation will eliminate the need for the planning CT scanning sessions (no additional x-ray exposure) and consequently the image fusion between MRI and planning CT. In this work, we propose a comprehensive MRI-based RTP procedure for an MRI-Linac system. Specifically, the method consists of a) data acquisition, b) analysis and correction of image artifacts caused by the scanner-related and patient-induced distortions, c) segmentation of organ structures relevant to dosimetric calculations (e.g. soft tissue, bone, air), d) conversion of MR images into CT-like images by assigning bulk electron density values to organ contours defined at step c), e) dose calculations in external magnetic field, and f) plan evaluation. Monte Carlo simulations were performed to determine the linac-MRI scanner's magnetic field induced effects on the dose deposited patterns using patient data. Specifically, we investigated the dosimetric differences between the corresponding MRI-based RT plans simulated at zero and 0.2 T. We found that the maximum percent differences for brain studies were within 4%. Most of these differences occurred at the inferior field edge and superficially at beam exits.

19.
Med Phys ; 31(5): 1203-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15191310

RESUMO

Lag and residual contrast have been quantified in an amorphous selenium (a-Se) active-matrix flat-panel imager (AMFPI) as a function of frame time, kilovoltage (kV) and megavoltage (MV) x-ray photon energies and amount of radiation incident on the detector. The AMFPI contains a 200 microm thick a-Se layer deposited on a thin film transistor (TFT) array of size 8.7 cm x 8.7 cm with an 85-microm pixel pitch. For all energies, the lag (signal normalized to the signal due to exposure) for the first (n = 1) and second (n = 2) frame after exposure ranges from 0.45% to 0.91% and from 0.29% to 0.51%, respectively. The amount of lag was determined to be a function of the time after the x-ray exposure irrespective of frame time or the magnitude of exposure. The lag for MV photon energies was slightly less than that for kV photon energies. The residual contrast for all energies studied ranges from 0.41% to 0.75% and from 0.219% to 0.41% for the n = 1 and n = 2 frames, respectively. These results show that lag and residual contrast in kV and MV radiographic applications are always less than 1% for the detection system used and only depend on the time after x-ray exposure.


Assuntos
Análise de Falha de Equipamento/métodos , Intensificação de Imagem Radiográfica/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Selênio/efeitos da radiação , Transdutores , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fatores de Tempo
20.
FEBS Lett ; 274(1-2): 93-5, 1990 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-2147663

RESUMO

The aim of this study is to clarify which signaling mechanism operates in Fc gamma receptor-mediated endocytosis in human neutrophils. Endocytosis of immune complexes was inhibited by antibodies directed to cell membrane phospholipase C (PLC) and A2 (PLA2) (maximal inhibition obtained was 57% and 28%, respectively), being almost abolished by these antibodies if used in combination (up to 91% inhibition). The protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, reversed this inhibitory effect. Four different PKC inhibitors (H-7, palmitoylcarnitine, sphingosine, and tamoxifen) produced a dose-dependent inhibition of endocytosis, up to over 80% in each case. H-8 (1-10 microM) which inhibits cyclic nucleotide protein kinases but not PKC had no effect upon endocytosis. It is concluded that Fc gamma receptor-induced activation of PLC and PLA2 triggers endocytosis by activation of PKC.


Assuntos
Antígenos de Diferenciação/fisiologia , Endocitose , Neutrófilos/fisiologia , Proteína Quinase C/sangue , Receptores Fc/fisiologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Células Cultivadas , Endocitose/efeitos dos fármacos , Humanos , Imunoglobulina G/fisiologia , Isoquinolinas/farmacologia , Cinética , Neutrófilos/enzimologia , Neutrófilos/imunologia , Palmitoilcarnitina/farmacologia , Piperazinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Receptores de IgG , Transdução de Sinais , Esfingosina/farmacologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...